

Geometric Optimal Control with Applications

Accelerated Graduate Course Institute of Mathematics for Industry, Kyushu University,

BERNARD BONNARD Inria Sophia Antipolis et Institut de Mathématiques de Bourgogne 9 avenue Savary e21078 Dijon, France

> MONIQUE CHYBA 2565 McCarthy the Mall Department of Mathematics University of Hawaii Honolulu, HI 96822, USA

> > with the help of

GAUTIER PICOT, AARON TAMURA-SATO, STEVEN BRELSFORD

June-July 2015

Contents

3	\mathbf{Cal}	Calculus of Variations						
	3.1	1 Statement of the Problem in the Holonomic Case						
		3.1.1	Hamiltonian Equations	3				
		3.1.2	Hamilton-Jacobi-Bellman Equation	4				
		3.1.3	Euler-Lagrange Equations and Characteristics of the HJB Equation	4				
		3.1.4	Second Order Conditions	5				
		3.1.5	The Accessory Problem and the Jacobi Equation	5				
		3.1.6	Conjugate Point and Local Morse Theory	6				
		3.1.7	Scalar Riccati Equation	6				
		3.1.8	Local \mathbf{C}^{0} Minimizer - Extremal Field - Hilbert Invariant Integral	7				
			· · · · ·	-				
	Ac	knowle	edgments	9				

Chapter 3

Calculus of Variations

This section deals with the Calculus of Variations.

3.1 Statement of the Problem in the Holonomic Case

We consider the set C of all curves $x : [t_0, t_1] \to \mathbb{R}^n$ of class C^2 , the initial and final times t_0, t_1 being not fixed and the problem of minimizing a functional on C:

$$C(x) = \int_{t_0}^{t_1} L(t, x(t), \dot{x}(t)) dt$$

where L is C^2 . Moreover, we impose extremeties conditions: $x(t_0) \in M_0, x(t_1) \in M_1$ where M_0, M_1 are C^1 -submanifolds of \mathbb{R}^n . The distance between the curves $x(t), x^*(t)$ is

$$\rho(x, x^*) = \max_{t} \|x(t) - x^*(t)\| + \max_{t} \|\dot{x}(t) - \dot{x}^*(t)\| + d(P_0, P_0^*) + d(P_1, P_1^*)$$

where $P_0 = (t_0, x_0)$ and $P_1 = (t_1, x_1)$ and $\|\cdot\|$ is any norm on \mathbb{R}^n and d is the usual distance mapping on \mathbb{R}^{n+1} . The two curves $x(\cdot), c^*(\cdot)$ being not defined on the same interval they are by convention C^2 -extended on the union of both intervals.

Proposition 1. (Fundamental formula of the classical calculus of variations) We adopt the standard notation of classical calculus of variations, see [12]. Let $\gamma(\cdot)$ be a reference curve with extremeties $(t_0, x_0), (t_1, x_1)$ and let $\gamma(\cdot)$ be any curve with extremeties $(t_0 + \delta t_0, x_0 + \delta x_0), (t_1 + \delta t_1, x_1 + \delta x_1)$. We denote by $h(\cdot)$ the variation: $h(t) = \gamma(t) - \gamma(t)$. Then, if we set $\Delta C = C(\gamma) - C(\gamma)$, we have

$$\Delta C = \int_{t_0}^{t_1} \left(\frac{\partial L}{\partial x} - \frac{d}{dt} \frac{\partial L}{\partial \dot{x}} \right)_{|\gamma} .h(t)dt + \left[\frac{\partial L}{\partial \dot{x}_{|\gamma}} .\delta x \right]_{t_0}^{t_1} + \left[(L - \frac{\partial L}{\partial \dot{x}} .\dot{x})_{|\gamma} \delta t \right]_{t_0}^{t_1} + o(\rho(\underline{\gamma}, \gamma))$$
(3.1)

where . denotes the scalar product in \mathbb{R}^n .

Proof. We write

$$\begin{split} \Delta C &= \int_{t_0+\delta t_0}^{t_1+\delta t_1} L(t,\gamma(t)+h(t),\dot{\gamma}(t)+\dot{h}(t))dt - \int_{t_0}^{t_1} L(t,\gamma(t),\dot{\gamma}(t))dt \\ &= \int_{t_0}^{t_1} L(t,\gamma(t)+h(t),\dot{\gamma}(t)+\dot{h}(t))dt - \int_{t_0}^{t_1} L(t,\gamma(t),\dot{\gamma}(t))dt \\ &+ \int_{t_1}^{t_1+\delta t_1} L(t,\gamma(t)+h(t),\dot{\gamma}(t)+\dot{h}(t))dt - \int_{t_0}^{t_0+\delta t_0} L(t,\gamma(t)+h(t),\dot{\gamma}(t)+\dot{h}(t))dt \end{split}$$

We develop this expression using the Taylor expansions keeping only the linear terms in $h, \dot{h}, \delta x, \delta t$. We get

$$\Delta C = \int_{t_0}^{t_1} \left(\frac{\partial L}{\partial x_{|\gamma}} \cdot h(t) + \frac{\partial L}{\partial \dot{x}_{|\gamma}} \cdot \dot{h}(t) \right) + \left[L(t,\gamma,\dot{\gamma})\delta t \right]_{t_0}^{t_1} + o(h,\dot{h},\delta t).$$

The derivative of the variation h is depending on h, integrating by parts we obtain

$$\Delta C \sim \int_{t_0}^{t_1} \left(\frac{\partial L}{\partial x} - \frac{d}{dt} \frac{\partial L}{\partial \dot{x}} \right)_{|\gamma} .h(t)dt + \left[\frac{\partial L}{\partial \dot{x}_{|\gamma}} .h(t) \right]_{t_0}^{t_1} + \left[L_{|\gamma} \delta t \right]_{t_0}^{t_1}$$

We observe that $h, \delta x, \delta t$ are not dependent at the extremeties and we have for $t = t_0$ or $t = t_1$ the relation

$$h(t+\delta t) \sim h(t) \sim \delta x - \dot{x} \delta t$$

Hence, we obtain the following approximation:

$$\Delta C \sim \int_{t_0}^{t_1} \left(\frac{\partial L}{\partial x} - \frac{d}{dt} \frac{\partial L}{\partial \dot{x}} \right)_{|\gamma} .h(t)dt + \left[\frac{\partial L}{\partial \dot{x}_{|\gamma}} .\delta x \right]_{t_0}^{t_1} + \left[(L - \frac{\partial L}{\partial \dot{x}} \dot{x})_{|\gamma} \delta t \right]_{t_0}^{t_1}$$

where all the quantities are evaluated along the reference trajectory $\gamma(\cdot)$. In this formula $h, \delta x, \delta t$ can be taken independent because in the integral the values $h(t_0), h(t_1)$ do not play any special role.

From 3.1, we deduce that the standard first-order necessary conditions of the calculus of variations.

Corollary 1. Let us consider the minimization problem where the extremities $(t_0, x_0), (t_1, x_1)$ are fixed. Then a minimizer $\gamma(\cdot)$ satisfies the Euler-Lagrange equation

$$\frac{\partial L}{\partial x} - \frac{d}{dt} \frac{\partial L}{\partial \dot{x}_{|\gamma}} = 0 \tag{3.2}$$

Proof. Since the extremities are fixed we set in (3.1) $\delta x = 0$ and $\delta t = 0$ at $t = t_0$ and $t = t_1$. Hence

$$\Delta C = \int_{t_0}^{t_1} \left(\frac{\partial L}{\partial x} - \frac{d}{dt} \frac{\partial L}{\partial \dot{x}} \right)_{|_{\gamma}} .h(t)dt + o(h,\dot{h})$$

for each variation $h(\cdot)$ defined on $[t_0, t_1]$ such that $h(t_0) = h(t_1) = 0$. If $\gamma(\cdot)$ is a minimizer, we must have $\Delta C \ge 0$ for each $h(\cdot)$ and clearly by linearity, we have

$$\int_{t_0}^{t_1} \left(\frac{\partial L}{\partial x} - \frac{d}{dt} \frac{\partial L}{\partial \dot{x}} \right)_{|_{\gamma}} .h(t) dt = 0$$

for each $h(\cdot)$. Since the mapping $t \mapsto \left(\frac{\partial L}{\partial x} - \frac{d}{dt} \frac{\partial L}{\partial \dot{x}}\right)|_{\gamma}$ is continuous, it must be identically zero along $\gamma(\cdot)$ and the Ealer-Lagrange equation 3.2 is satisfied.

3.1.1 Hamiltonian Equations

The Hamiltonian formalism, which is the natural formalism to deal with the maximum principle, appears in the classical calculus of variations via the **Legendre transformation**.

Definition 1. The Legendre transformation is defined by

$$p = \frac{\partial L}{\partial \dot{x}}(t, x, \dot{x}) \tag{3.3}$$

and if the mapping $\varphi: (x, \dot{x}) \mapsto (x, p)$ is a diffeomorphism we can introduce the Hamiltonian:

$$H: (t, x, p) \mapsto p.\dot{x} - L(t, x, p). \tag{3.4}$$

Proposition 2. The formula (3.1) takes the form

$$\Delta C \sim \int_{t_0}^{t_1} \left(\frac{\partial L}{\partial x} - \frac{d}{dt} \frac{\partial L}{\partial \dot{x}} \right)_{|_{\gamma}} .h(t)dt + \left[p\delta x - H\delta t \right]_{t_0}^{t_1}$$
(3.5)

and if $\gamma(\cdot)$ is a minimizer it satisfies the Euler-Lagrange equation in the Hamiltonian form

$$\dot{x}(t) = \frac{\partial H}{\partial p}(t, x(t), p(t)), \qquad \dot{p}(t) = -\frac{\partial H}{\partial x}(t, x(t), p(t))$$
(3.6)

3.1.2 Hamilton-Jacobi-Bellman Equation

Definition 2. A solution of the Euler-Lagrange equation is called an extremal. Let $P_0 = (t_0, x_0)$ and $P_1 = (t_1, x_1)$. The Hamilton-Jacobi-Bellman (HJB) function is the multivalued function defined by

$$S(P_0, P_1) = \int_{t_0}^{t_1} L(t, \gamma(t), \dot{\gamma}(t)) dt$$

where $\gamma(\cdot)$ is any extremal with fixed extremities x_0, x_1 . If $\gamma(\cdot)$ is a minimizer, it is called the value function.

Proposition 3. Assume that for each P_0, P_1 there exists a unique extremal joining P_0 to P_1 and suppose that the HJB function is C^1 . Let P_0 be fixed and let $\overline{S} : P \mapsto S(P_0, P)$. Then \overline{S} is a solution of the Hamilton-Jacobi-Bellman equation

$$\frac{\partial S}{\partial t}(P_0, P) + H(t, x, \frac{\partial S}{\partial x}) = 0$$
(3.7)

Proof. Let P = (t, x) and $P + \delta P = (t + \delta t, x + \delta x)$. Denote by $\gamma(\cdot)$ the extremal joining P_0 to $P + \delta P$. We have

$$\Delta \bar{S} = \bar{S}(t + dt, x + dx) - \bar{S}(t, x) = C(\bar{\gamma}) - C(\gamma)$$

and from (2) it follows that:

$$\Delta \bar{S} = \Delta C \sim \int_{t_0}^t \left(\frac{\partial L}{\partial x} - \frac{d}{dt} \frac{\partial L}{\partial \dot{x}} \right)_{|_{\gamma}} .h(t)dt + \left[p\delta x - H\delta t \right]_{t_0}^t$$

where $h(\cdot) = \bar{\gamma}(\cdot) - \gamma(\cdot)$. Since $\gamma(\cdot)$ is a solution of the Euler-Lagrange equation, the integral is zero and

$$\Delta \bar{S} = \Delta C \sim \left[p \delta x - H \delta t \right]_{t_0}^t$$

In other words, we have

$$d\bar{S} = pdx - Hdt$$

Identifying, we obtain

$$\frac{\partial \bar{S}}{\partial t} = -H, \qquad \frac{\partial \bar{S}}{\partial x} = p. \tag{3.8}$$

Hence we get the HJB equation. Moreover p is the gradient to the level sets $\{x \in \mathbb{R}^n; \overline{S}(t, x) = c\}$.

3.1.3 Euler-Lagrange Equations and Characteristics of the HJB Equation

Under some extra regularity conditions, the extremals are the characteristics of the HJB equation. Indeed, let $u(\cdot)$ be a solution of the HJB equation. Hence we can write (3.7) as

$$F(t, x, \frac{\partial S}{\partial t}, \frac{\partial S}{\partial x}) = \frac{\partial S}{\partial t} + H(t, x, \frac{\partial S}{\partial x}) = 0$$

and let us assume the map F to be C^2 . Introduce $p = \frac{\partial S}{\partial x}$, $T = \frac{\partial S}{\partial t}$ and z = S(t, x). Then, according to [19], the characteristic curves parameterized by s are solutions of:

$$\frac{dx}{ds} = \frac{\partial F}{\partial p} = \frac{\partial H}{\partial p}$$

$$\frac{dp}{ds} = -\frac{\partial F}{\partial x} - \frac{\partial F}{\partial z}p = -\frac{\partial H}{\partial x}$$

$$\frac{dz}{ds} = p\frac{\partial F}{\partial p} + T = p\frac{\partial H}{\partial p} - H$$

$$\frac{dt}{ds} = \frac{\partial F}{\partial T} = 1$$

$$\frac{dT}{ds} = -\frac{\partial F}{\partial t} - \frac{\partial F}{\partial z}p = -\frac{\partial H}{\partial t}$$
(3.9)

In particular since $\frac{dt}{ds} = 1$, we deduce that

$$\frac{dx}{dt} = \frac{\partial H}{\partial p}, \qquad \frac{dp}{dt} = -\frac{\partial H}{\partial x}$$

which is the Hamiltonian form of the Euler-Lagrange equation.

3.1.4 Second Order Conditions

The Euler-Lagrange equation has been derived using the linear terms in the Taylor expansion of ΔC . Using the quadratic terms we can get necessary and sufficient second order condition. For the sake of simplicity, from now on we assume that the curves $t \mapsto x(t)$ belongs to \mathbb{R} , and we consider the problem with fixed extremities: $x(t_0) = x_0, x(t_1 = x_1)$. If the map L is taken C^3 , the second derivative is computed as follows:

$$\begin{split} \Delta C &= \int_{t_0}^{t_1} \left(L(t), \gamma(t) + h(t), \dot{\gamma}(t) + \dot{h}(t) - L(t, \gamma(t), \gamma(t)) \right) dt \\ &= \int_{t_0}^{t_1} \left(\frac{\partial L}{\partial x} - \frac{d}{dt} \frac{\partial L}{\partial \dot{x}} \right)_{|\gamma} \cdot h(t) dt + \frac{1}{2} \int_{t_0}^{t_1} \left((\frac{\partial^2 L}{\partial x^2})_{|\gamma} h^2(t) + 2(\frac{\partial^2 L}{\partial x \partial \dot{x}})_{|\gamma} h(t) \dot{h}(t) \right. \\ &+ \left(\frac{\partial^2 L}{\partial \dot{x}^2} \right)_{|\gamma} \dot{h}^2(t) \Big) dt + o(h, \dot{h})_2 \end{split}$$

If $\gamma(t)$ is an extremal, the first integral is zero and the second integral corresponds to the **intrinsic** second-order derivative $\delta^2 C$, that is:

$$\delta^2 C = \frac{1}{2} \int_{t_0}^{t_1} \left(\left(\frac{\partial^2 L}{\partial x^2} \right)_{|\gamma} h^2(t) + 2 \left(\frac{\partial^2 L}{\partial x \partial \dot{x}} \right)_{|\gamma} h(t) \dot{h}(t) + \left(\frac{\partial^2 L}{\partial \dot{x}^2} \right)_{|\gamma} \dot{h}^2(t) \right) dt$$
(3.10)

Using $h(t_0) = h(t_1) = 0$, it can be written after an integration by parts as

$$\delta^2 C = \int_{t_0}^{t_1} \left(P(t)\dot{h}^2(t) + Q(t)h^2(t) \right) dt$$
(3.11)

where

$$P = \frac{1}{2} \left(\frac{\partial^2 L}{\partial \dot{x}^2} \right)_{|_{\gamma}}, \qquad Q = \frac{1}{2} \left(\frac{\partial^2 L}{\partial x^2} - \frac{d}{dt} \frac{\partial^2 L}{\partial x \partial \dot{x}} \right)_{|_{\gamma}}.$$

Using the fact that in the integral (3.11) the term $P\dot{h}^2$ is dominating [12], we get the following proposition.

Proposition 4. If $\gamma(\cdot)$ is a minimizing curve for the fixed extremities problem then it must satisfy the Legendre condition:

$$\left(\frac{\partial^2 L}{\partial \dot{x}^2}\right)_{|_{\gamma}} \ge 0. \tag{3.12}$$

3.1.5 The Accessory Problem and the Jacobi Equation

The intrinsic second-order derivative is given by

$$\delta^2 C = \int_{t_0}^{t_1} \left(P(t)\dot{h}^2(t) + Q(t)h^2(t) \right) dt, \qquad h(t_0) = h(t_1) = 0,$$

where P, Q are as above. We write

$$\delta^{2}C = \int_{t_{0}}^{t_{1}} \left((P(t)\dot{h}(t))\dot{h}(t) + (Q(t)h(t))h(t) \right) dt$$

and integrating by parts using $h(t_0) = h(t_1) = 0$, we obtain

$$\delta^2 C = \int_{t_0}^{t_1} \Big(Q(t)h(t) - \frac{d}{dt}(P(t)\dot{h}(t)) \Big) h(t)dt$$

Let us introduce the linear operator $D: h \mapsto Qh - \frac{d}{dt}(P\dot{h})$. Hence, we can write

$$\delta^2 C = (Dh, h) \tag{3.13}$$

where (,) is the usual scalar product on $L^2([t_0, t_1])$. The linear operator D is called the **Euler-Lagrange** operator.

Definition 3. From (3.13), $\delta^2 C$ is a quadratic operator on the set C_0 of C^2 -curves $h : [t_0, t_1] \to \mathbb{R}$ satisfying $h(t_0) = h(t_1) = 0, h \neq 0$. Rather to study $\delta^C > 0$ for each $h(\cdot) \in C_0$ we can study the so-called accessory problem: $\min_{h \in C_0} \delta^2 C$.

Definition 4. The Euler-Lagrange equation corresponding to the accessory problem is called the Jacobi equation and is given by

$$Dh = 0 \tag{3.14}$$

where D is the Euler-Lagrange operator: $Dh = Qh - \frac{d}{dt}(P\dot{h})$. It is a second-order linear differential operator.

Definition 5. The strong Legendre condition is P > 0 where $P = \frac{1}{2} \left(\frac{\partial^2 L}{\partial \dot{x}^2} \right)_{|\gamma}$. If this condition is satisfied, the operator D is said to be nonsingular.

3.1.6 Conjugate Point and Local Morse Theory

See also [14], [27].

Definition 6. Let $\gamma(\cdot)$ be an extremal. A solution $J(\cdot) \in C_0$ of DJ = 0 on $[t_0, t_1]$ is called a Jacobi curve. If there exists a Jacobi curve along $\gamma(\cdot)$ on $[t_0, t_1]$ the point $\gamma(t_1)$ is said to be conjugate to $\gamma(t_0)$.

Theorem 1. (Local Morse theory [27]). Let t_0 be fixed and let us consider the Euler-Lagrange operator (indexed by $t > t_0$) D^t defined on the set C_0^t of curves on $[t_0, t]$ satisfying $h(t_0) = h(t_1) = 0$. By definition, a Jacobi curve on $[t_0, t]$ corresponds to an eigenvector J^t associated to an eigenvalue $\lambda^t = 0$ of D^t . If the strong Legendre condition is satisfied along an extremal $\gamma : [t_0, t] \to \mathbb{R}^n$, we have a precise description of the spectrum of D^t as follows. There exists $t_0 < t_1 < \cdots < t_s < T$ such that each $\gamma(t_i)$ is conjugate to $\gamma(t_0)$. If n_i corresponds to the dimension of the set of the Jacobi curves J^{t_i} associated to the conjugate point $\gamma(t_i)$, then for any \tilde{T} such that $t_0 < t_1 < \cdots < t_k < \tilde{T} < t_{k+1} < \cdots < T$ we have the identity

$$n_{\tilde{T}}^{-} = \sum_{i=1}^{k} n_i \tag{3.15}$$

where $n_{\tilde{T}}^- = \dim\{\text{linear space of eigenvectors of } D^{\tilde{T}} \text{ corresponding to strictly negative eigenvalues}\}$. In particular if $\tilde{T} > t_1$ we have

$$\min_{h \in \mathcal{C}_0} \int_{t_0}^{\bar{T}} (Q(t)h^2(t) + P(t)\dot{h}^2(t))dt = -\infty$$
(3.16)

3.1.7 Scalar Riccati Equation

Definition 7. The quadratic differential equation

$$P(t)(Q(t) + \dot{w}(t)) = w^{2}(t)$$
(3.17)

is called the scalar Riccati equation.

Its connections with the problem is the following. Assume P > 0 on $[t_0, t_1]$ and assume that there exists a solution $u(\cdot)$ of the Jacobi equation such that this solution **does not vanish** on the interval $[t_0, t_1]$.

Let $h(\cdot)$ be any C^2 -function such that $h(t_0) = h(t_1) = 0$. Then

$$\int_{t_0}^{t_1} d(w(t)h^2(t))dt = 0$$

and

$$\delta^2 C = \int_{t_0}^{t_1} \left((P\dot{h}^2 + Qh^2) + d(wh^2) \right) dt = \int_{t_0}^{t_1} \left(P\dot{h}^2 + 2wh\dot{h} + (Q + \dot{w})h^2 \right) dt$$

If $w(\cdot)$ is a solution of the Riccati equation, the previous expression can be written as

$$\delta^{2}C = \int_{t_{0}}^{t_{1}} P(t) \left(\dot{h} + \frac{w(t)}{P(t)}h(t)\right)^{2} dt.$$

Hence

$$\delta^2 C = \int_{t_0}^{t_1} P(t) \varphi^2(t) dt$$

where $\varphi(t) = \dot{h} + \frac{w(t)h(t)}{P(t)}$. Now observe that if we set $w(t) = -\frac{\dot{u}(t)}{u(t)}P(t)$ where $u(\cdot)$ is nonvanishing on $[t_0, t_1]$, then we get that $u(\cdot)$ is a solution of the Jacobi equation:

$$Q(t)u(t) - \frac{d}{dt}(P(t)\dot{u}(t)) = 0$$

and

$$\dot{h}(t) + \frac{w(t)h(t)}{P(t)} = \frac{\dot{h}(t)u(t) - h(t)\dot{u}(t)}{u(t)}.$$

Hence $\varphi(t) \equiv 0$ is equivalent to

$$\dot{h}(t)u(t) - h(t)\dot{u}(t) = 0.$$

This is possible if and only if $h(\cdot) = Cu(\cdot)$ where C is a constant. It contradicts the fact that $u(\cdot)$ does not vanish on $[t_0, t_1]$ and that $h(t_0) = h(t_1) = 0$ if $h \neq 0$. Hence $\varphi \neq 0$ unless $h \equiv 0$ and

$$\delta^2 C = \int_{t_0}^{t_1} P(t)\varphi^2(t)dt$$

is nonzero for each $h(\cdot) \in \mathcal{C}_0$ and $\delta^2 C > 0$.

3.1.8 Local C⁰ Minimizer - Extremal Field - Hilbert Invariant Integral

Definition 8. Consider the time-minimal problem with fixed extremities: $(t, x_0), (t_1, x_1) \in \mathbb{R}^{n+1}$. Let $\gamma(\cdot)$ be a reference trajectory. It is called a C^0 -minimizer if it is a local minimum for the C^0 -topology:

$$d(x, x^*) = \max_{t \in [t_0, t_1]} \|x(t) - x^*(t)\|$$

To obtain C^0 -sufficient optimality conditions we use the concept of **extremal** (or **Mayer field**).

Definition 9. Let $\gamma : [t_0, t_1] \to \mathbb{R}^n$ be a reference extremal issued from x_0 at $t = t_0 : \gamma(t_0) = x_0$. An extremal field is a mapping $\phi : (\alpha, t) \to \mathbb{R}^{n+1}, \alpha \in D$ = parameter space $\subset \mathbb{R}^n$ such that:

- 1. $\phi(\alpha_0, t) = (t, \gamma(t))$ is the reference extremal and $\{\phi(\alpha, \cdot); \alpha \in D\}$ is a family \mathcal{F} of extremals;
- 2. the image of ϕ denoted \mathcal{T} is a tubular neighborhood of $\gamma(\cdot)$ and through each point (t, x) there passes a unique extremal of \mathcal{F} whose derivative is denoted by u(t, x).
- 3. The field is formed by extremals, starting at $t_0 \varepsilon$ from a single point $\gamma(t_0 \varepsilon)$ for $\varepsilon > 0$ small enough.

We assume that $t \mapsto u(t, x)$ is C^1 and we use the following notations:

$$\hat{p} = \frac{\partial L}{\partial \dot{x}}_{|\dot{x}=u(t,x)}, \quad \hat{L} = L_{|\dot{x}=u(t,x)}, \quad \hat{H} = H_{p=\hat{p}}$$
(3.18)

where $H = p.\dot{x} - L$ is the Hamiltonian.

Lemma 1. The following relations hold:

$$\frac{\partial \hat{p}_i}{\partial x_k} = \frac{\partial \hat{p}_k}{\partial x_i}, \qquad \frac{\partial \hat{H}}{\partial x_i} = -\frac{\partial \hat{p}_i}{\partial t}$$

In particular the one form $\hat{\omega} = -\hat{H}dt + \hat{p}dx$, called Hilbert-Cartan form, is closed.

Theorem 2. (Hilbert invariant integral theorem). The integral

$$\int_{\Gamma} -\hat{H}dt + \hat{p}dx$$

is independent of the curve $\Gamma(\cdot)$ on \mathcal{T} . Moreover if $\Gamma(\cdot)$ is an extremal of \mathcal{F} it is given by $\int_{\Gamma} L dt$.

Proof. The first assertion is a consequence of the fact that the form $\hat{\omega}$ is closed. Moreover if $\Gamma(\cdot)$ is an extremal we have $\frac{dx}{dt} = u(t,x)$ and $-\hat{H}dt + \hat{p}dx = (\hat{L} - \hat{p}.u(t,x))dt + \hat{p}dx$.

Remark. The resolution of $\hat{\omega} = dS$ on the domain where $S : (t, x) \to \mathbb{R}$ is a smooth function, is equivalent to solve the Hamilton-Jacobi equation.

Corollary 2. Let $\gamma(\cdot)$ be the reference extremal with extremities $(t_0, x_0), (t_1, x_1)$ and let $\Gamma(\cdot)$ be any curve of \mathcal{T} with the same extremities. We define by E the excess Weierstrass mapping:

$$E(t, x, z, w) = L(t, x, w) - L(t, x, z) - (w - z)\frac{\partial L}{\partial \dot{x}}(t, x, z),$$

 $z = u(t, x, (t, x) \in \mathcal{T})$. Then, if $E \ge 0$ we have that $\gamma(\cdot)$ is a C^0 minimizer on \mathcal{T} .

Proof. We have

$$\int_{\gamma} L(t, x, \dot{x}) dt = \int_{\Gamma} (\hat{L} - \hat{p} . u(t, x)) dt + \hat{p} dx,$$

hence

$$\begin{aligned} \Delta C &= \int_{\Gamma} L(t, x, \dot{x}) dt - \int_{\gamma} L(t, x, \dot{x}) dt \\ &= \int_{\Gamma} \left((L - \hat{L}) - (\dot{x} - u(t, x) . \hat{p}) \right) dt \\ &= \int_{\Gamma} E(t, x, u(t, x), \dot{x}) dt \end{aligned}$$

This proves the assertion.

Acknowledgments

M. Chyba is partially supported by the National Science Foundation (NSF) Division of Mathematical Sciences, award #1109937.

Bibliography

- A. Agrachev, A. Sarychev, Abnormal sub-Reimannian geodesics: Morse index and rigidity, Ann. Inst. H. Poincaré Anal. Non Linéaire 13, No. 6 (1996), pp.635-690.
- [2] M. Bonnard and M. Chyba, Singular trajectories and their role in control theory, Springer-Verlag, Berlin, 2003.
- [3] G.A. Bliss, Lectures on the Calculus of Variations, Univ. of Chicago Press, Chicago, 1946.
- [4] B. Bonnard, I. Kupka, Théorie des singularités de l'application entrée-sortie et optimalité des trajectoires singuliéres, Forum Math. 5, No. 2 (1992), pp.111-159.
- [5] V. Calvez, P. Gabriel, and S. Gaubert, Non-linear eigenvalue problems arising from growth maximization of positive linear dynamical systems, Proceedings of IEEE 53rd Annual Conference on Decision and Control (CDC 2014), Los Angeles, pp. 1600–1607.
- [6] M. Chyba, J.-M. Coron, P. Gabriel, A. Jacquemard, G. Patterson, G. Picot, and P. Shang, Optimal geometric control applied to the protein misfolding cyclic amplification process, Acta Appl. Math., in press (2015), DOI 10.1007/s10440-014-9950-8.
- [7] M. Chyba, G. Patterson, G. Picot, et al., Designing rendezvous missions with mini-moons using geometric optimal control, J. Ind. Manag. Optim., 10 (2014), pp. 477–501.
- [8] J.-M. Coron, P. Gabriel, and P. Shang, Optimization of an amplification protocol for misfolded proteins by using relaxed control, J. Math. Biol., 70 (2015), pp. 289–327.
- [9] N. Fernández-Borges and J. Castilla, PMCA. A decade of in vitro prion replication, Current Chem. Biol., 4(2010), pp. 200-207.
- [10] R. Gabasov, F.M. Kirilova, High order necessary conditions for optimality, SIAM J Control Optim. 10, No. 1 (1972), pp.127-168.
- [11] P. Gabriel, Équations de transport-fragmentation et applications aux maladies à prions, PhD thesis, Université Pierre et Marie Curie-Paris VI, 2011.
- [12] I.M. Gelfand, S.V. Fomin, *Calculus of Variations*, Revised English edition translated and edited by Richard A. Silverman, Prentice Hall, Inc., Englewood Cliffs, New Jersey.
- [13] C. Godbillon, Geométrie différentielle et mécanique analytic, Hermann, Paris, 1969.
- [14] J. Gregory, Quadratic form theory and differential equations, Mathematics in Science and Engineering, 152 (1980), Academic Press Inc. [Harcourt Brace Jovanovich, Publishers], New York-London.
- [15] N. Gonzalez-Montalban, N. Makarava, V. G. Ostapchenko, et al., Highly efficient protein misfolding cyclic amplification, PLoS Pathog., 7(2009), e1001277.
- [16] D. Henrion, J. B. Lasserre, and J. Lofberg, Gloptipoly 3: Moments, optimization and semidefinite programming, Optim. Methods Software, 4 (2009), pp. 761–779.

- [17] H. Hermes, Lie algebras of vector fields and local approximation of attainable sets, SIAM J Control Optim. 16, No. 5 (1978), pp.715-727.
- [18] R.M. Hirschorn, Controllability in nonlinear systems, J Differential Equations 19, No. 1 (1975), pp.46-61.
- [19] F. John, Partial differential equations, reprint of 4th edition, Applied Mathematical Sciences, 1 (1991), Springer-Verlag, New York.
- [20] V. Jurdjevic, Geometric control theory, Cambridge Studies in Advanced Mathematics, 52 (1997), Cambridge University Press, Cambridge.
- [21] V. Jurdjevic, I. Kupka, Control systems subordinated to a group action, J Differential Equations 39, No. 2 (1981), pp.186-211.
- [22] D. Kashchiev, Nucleation, Butterworth-Heinemann, 2000.
- [23] T. P.J. Knowles, C. A. Waudby, G. L. Devlin, S. I.A. Cohen, A. Aguzzi, M. Vendruscolo, E. M. Terentjev, M. E. Welland, and C. M. Dobson, An analytical solution to the kinetics of breakable filament assembly, Science, 326 (2009), pp. 1533–1537.
- [24] A.J. Krener, The high order maximum principle and its application to singular extremals, SIAM J Control Optim. 15, No. 2 (1977), pp.256-293.
- [25] C. Lobry, Controllability of non-linear systems on compact manifolds, SIAM J. Control and Optimization 1 (1974), pp.1-4.
- [26] J. Masel, V. A.A. Jansen, and M. A. Nowak, Quantifying the kinetic parameters of prion replication, Biophys. Chem., 77 (1999), pp. 139–152.
- [27] J. Milnor, Morse theory, Annals of Mathematics Studies, 51 (1963), Princeton University Press, Princeton.
- [28] C. E. Mays, W. Titlow, T. Seward, et al., Enhancement of protein misfolding cyclic amplification by using concentrated cellular prion protein source, Biochem. Biophys. Research Comm., 388 (2009), pp. 306–310.
- [29] F. Oosawa and S. Asakura, Thermodynamics of the Polymerization of Protein, Academic Press, 1975.
- [30] F. Oosawa and M. Kasai, A theory of linear and helical aggregations of macromolecules, J. Mol. Biol., 4 (1962), pp. 10–21.
- [31] L. S. Pontryagin, V. G. Boltyanskii, R. V. Gamkrelidze, et al., The Mathematical Theory of Optimal Processes, John Wiley & Sons, New York, 1962.
- [32] P. Saa and J. Castilla and C. Soto, Ultra-efficient Replication of Infectious Priors by Automated Protein Misfolding Cyclic Amplification, Biological Chemistry 281(16)(2006), pp. 35245-3525.
- [33] G. P. Saborio, B. Permanne, and C. Soto, Sensitive detection of pathological prion protein by cyclic amplification of protein misfolding, Nature, 411(2001), pp. 810–813.
- [34] H.J. Sussmann, Orbits of families of vector fields and integrability of distributions, Trans. Am. Math. Soc. 180 (1973), pp.171-188.
- [35] H.J. Sussmann, V. Jurdjevic, Controllability of non-linear systems, J Differential Equations 12 (1972), pp.95-116.
- [36] W.-F. Xue, S. W. Homans, and S. E. Radford, Systematic analysis of nucleation-dependent polymerization reveals new insights into the mechanism of amyloid self-assembly, Proc. Natl. Acad. Sci., 105 (2008), pp. 8926–8931.