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Chapter 3

Calculus of Variations

This section deals with the Calculus of Variations.

3.1 Statement of the Problem in the Holonomic Case

We consider the set C of all curves x : [t0, t1] → Rn of class C2, the intitial and final times t0, t1 being not
fixed and the problem of minimizing a functional on C:

C(x) =

∫ t1

t0

L(t, x(t), ẋ(t))dt

where L is C2. Moreover, we impose extremeties conditions: x(t0) ∈ M0, x(t1) ∈ M1 where M0,M1 are
C1-submanifolds of Rn. The distance between the curves x(t), x∗(t) is

ρ(x, x∗) = max
t

∥x(t)− x∗(t)∥+max
t

∥ẋ(t)− ẋ∗(t)∥+ d(P0, P
∗
0 ) + d(P1, P

∗
1 )

where P0 = (t0, x0) and P1 = (t1, x1) and ∥ · ∥ is any norm on Rn and d is the usual distance mapping on
Rn+1. The two curves x(·), c∗(·) being not defined on the same interval they are by convention C2-extended
on the union of both intervals.

Proposition 1. (Fundamental formula of the classical calculus of variations) We adopt the stan-
dard notation of classical calculus of variations, see [12]. Let γ(·) be a reference curve with extremeties
(t0, x0), (t1, x1) and let γ(·) be any curve with extremeties (t0+ δt0, x0+ δx0), (t1+ δt1, x1+ δx1). We denote
by h(·) the variation: h(t) = γ(t)− γ(t). Then, if we set ∆C = C(γ)− C(γ), we have

∆C =

∫ t1

t0

(
∂L

∂x
− d

dt

∂L

∂ẋ

)
|γ
.h(t)dt+

[
∂L

∂ẋ|γ
.δx

]t1
t0

+

[
(L− ∂L

∂ẋ
.ẋ)|γ δt

]t1
t0

+ o(ρ(γ, γ)) (3.1)

where . denotes the scalar product in Rn.

Proof. We write

∆C =

∫ t1+δt1

t0+δt0

L(t, γ(t) + h(t), γ̇(t) + ḣ(t))dt−
∫ t1

t0

L(t, γ(t), γ̇(t))dt

=

∫ t1

t0

L(t, γ(t) + h(t), γ̇(t) + ḣ(t))dt−
∫ t1

t0

L(t, γ(t), γ̇(t))dt

+

∫ t1+δt1

t1

L(t, γ(t) + h(t), γ̇(t) + ḣ(t))dt−
∫ t0+δt0

t0

L(t, γ(t) + h(t), γ̇(t) + ḣ(t))dt

We develop this expression using the Taylor expansions keeping only the linear terms in h, ḣ, δx, δt. We get

∆C =

∫ t1

t0

(
∂L

∂x|γ
.h(t) +

∂L

∂ẋ|γ
.ḣ(t)

)
+ [L(t, γ, γ̇)δt]

t1
t0
+ o(h, ḣ, δt).
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The derivative of the variation ḣ is depending on h, integrating by parts we obtain

∆C ∼
∫ t1

t0

(
∂L

∂x
− d

dt

∂L

∂ẋ

)
|γ
.h(t)dt+

[
∂L

∂ẋ|γ
.h(t)

]t1
t0

+
[
L|γ δt

]t1
t0

We observe that h, δx, δt are not dependent at the extremeties and we have for t = t0 or t = t1 the relation

h(t+ δt) ∼ h(t) ∼ δx− ẋδt

Hence, we obtain the following approximation:

∆C ∼
∫ t1

t0

(
∂L

∂x
− d

dt

∂L

∂ẋ

)
|γ
.h(t)dt+

[
∂L

∂ẋ|γ
.δx

]t1
t0

+

[
(L− ∂L

∂ẋ
ẋ)|γδt

]t1
t0

where all the quantities are evaluated along the reference trajectory γ(·). In this formula h, δx, δt can be
taken independent because in the integral the values h(t0), h(t1) do not play any special role.

From 3.1, we deduce that the standard first-order necessary conditions of the calculus of variations.

Corollary 1. Let us consider the minimization problem where the extremities (t0, x0), (t1, x1) are fixed.
Then a minimizer γ(·) satisfies the Euler-Lagrange equation

∂L

∂x
− d

dt

∂L

∂ẋ|γ
= 0 (3.2)

Proof. Since the extremities are fixed we set in (3.1) δx = 0 and δt = 0 at t = t0 and t = t1. Hence

∆C =

∫ t1

t0

(
∂L

∂x
− d

dt

∂L

∂ẋ

)
|γ
.h(t)dt+ o(h, ḣ)

for each variation h(·) defined on [t0, t1] such that h(t0) = h(t1) = 0. If γ(·) is a minimizer, we must have
∆C ≥ 0 for each h(·) and clearly by linearity, we have∫ t1

t0

(
∂L

∂x
− d

dt

∂L

∂ẋ

)
|γ
.h(t)dt = 0

for each h(·). Since the mapping t 7→ (∂L∂x − d
dt

∂L
∂ẋ )|γ is continuous, it must be identically zero along γ(·) and

the Ealer-Lagrange equation 3.2 is satisfied.

3.1.1 Hamiltonian Equations

The Hamiltonian formalism, which is the natural formalism to deal with the maximum principle, appears in
the classical calculus of variations via the Legendre transformation.

Definition 1. The Legendre transformation is defined by

p =
∂L

∂ẋ
(t, x, ẋ) (3.3)

and if the mapping φ : (x, ẋ) 7→ (x, p) is a diffeomorphism we can introduce the Hamiltonian:

H : (t, x, p) 7→ p.ẋ− L(t, x, p). (3.4)

Proposition 2. The formula (3.1) takes the form

∆C ∼
∫ t1

t0

(
∂L

∂x
− d

dt

∂L

∂ẋ

)
|γ
.h(t)dt+

[
pδx−Hδt

]t1
t0

(3.5)

and if γ(·) is a minimizer it satisfies the Euler-Lagrange equation in the Hamiltonian form

ẋ(t) =
∂H

∂p
(t, x(t), p(t)), ṗ(t) = −∂H

∂x
(t, x(t), p(t)) (3.6)



Optimal Control Theory Summer 2015

3.1.2 Hamilton-Jacobi-Bellman Equation

Definition 2. A solution of the Euler-Lagrange equation is called an extremal. Let P0 = (t0, x0) and
P1 = (t1, x1). The Hamilton-Jacobi-Bellman (HJB) function is the multivalued function defined by

S(P0, P1) =

∫ t1

t0

L(t, γ(t), γ̇(t))dt

where γ(·) is any extremal with fixed extremities x0, x1. If γ(·) is a minimizer, it is called the value function.

Proposition 3. Assume that for each P0, P1 there exists a unique extremal joining P0 to P1 and suppose
that the HJB function is C1. Let P0 be fixed and let S̄ : P 7→ S(P0, P ). Then S̄ is a solution of the
Hamilton-Jacobi-Bellman equation

∂S

∂t
(P0, P ) +H(t, x,

∂S

∂x
) = 0 (3.7)

Proof. Let P = (t, x) and P + δP = (t+ δt, x+ δx). Denote by γ(·) the extremal joining P0 to P + δP . We
have

∆S̄ = S̄(t+ dt, x+ dx)− S̄(t, x) = C(γ̄)− C(γ)

and from (2) it follows that:

∆S̄ = ∆C ∼
∫ t

t0

(
∂L

∂x
− d

dt

∂L

∂ẋ

)
|γ
.h(t)dt+

[
pδx−Hδt

]t
t0
,

where h(·) = γ̄(·)− γ(·). Since γ(·) is a solution of the Euler-Lagrange equation, the integral is zero and

∆S̄ = ∆C ∼
[
pδx−Hδt

]t
t0

In other words, we have
dS̄ = pdx−Hdt.

Identifying, we obtain
∂S̄

∂t
= −H,

∂S̄

∂x
= p. (3.8)

Hence we get the HJB equation. Moreover p is the gradient to the level sets {x ∈ Rn; S̄(t, x) = c}.

3.1.3 Euler-Lagrange Equations and Characteristics of the HJB Equation

Under some extra regularity conditions, the extremals are the characteristics of the HJB equation. Indeed,
let u(·) be a solution of the HJB equation. Hence we can write (3.7) as

F (t, x,
∂S

∂t
,
∂S

∂x
) =

∂S

∂t
+H(t, x,

∂S

∂x
) = 0

and let us assume the map F to be C2. Introduce p = ∂S
∂x , T = ∂S

∂t and z = S(t, x). Then, according to [19],
the characteristic curves parameterized by s are solutions of:

dx

ds
=

∂F

∂p
=

∂H

∂p

dp

ds
= −∂F

∂x
− ∂F

∂z
p = −∂H

∂x
dz

ds
= p

∂F

∂p
+ T = p

∂H

∂p
−H

dt

ds
=

∂F

∂T
= 1

dT

ds
= −∂F

∂t
− ∂F

∂z
p = −∂H

∂t

(3.9)
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In particular since dt
ds = 1, we deduce that

dx

dt
=

∂H

∂p
,

dp

dt
= −∂H

∂x

which is the Hamiltonian form of the Euler-Lagrange equation.

3.1.4 Second Order Conditions

The Euler-Lagrange equation has been derived using the linear terms in the Taylor expansion of ∆C. Using
the quadratic terms we can get necessary and sufficient second order condition. For the sake of simplicity,
from now on we assume that the curves t 7→ x(t) belongs to R, and we consider the problem with fixed
extremities: x(t0) = x0, x(t1 = x1). If the map L is taken C3, the second derivative is computed as follows:

∆C =

∫ t1

t0

(
L(t), γ(t) + h(t), γ̇(t) + ḣ(t)− L(t, γ(t), ˙γ(t))

)
dt

=

∫ t1

t0

(
∂L

∂x
− d

dt

∂L

∂ẋ

)
|γ
.h(t)dt+

1

2

∫ t1

t0

(
(
∂2L

∂x2
)|γh

2(t) + 2(
∂2L

∂x∂ẋ
)|γh(t)ḣ(t)

+ (
∂2L

∂ẋ2
)|γ ḣ

2(t)
)
dt+ o(h, ḣ)2

If γ(t) is an extremal, the first integral is zero and the second integral corresponds to the intrinsic
second-order derivative δ2C, that is:

δ2C =
1

2

∫ t1

t0

(
(
∂2L

∂x2
)|γh

2(t) + 2(
∂2L

∂x∂ẋ
)|γh(t)ḣ(t) + (

∂2L

∂ẋ2
)|γ ḣ

2(t)
)
dt (3.10)

Using h(t0) = h(t1) = 0, it can be written after an integration by parts as

δ2C =

∫ t1

t0

(
P (t)ḣ2(t) +Q(t)h2(t)

)
dt (3.11)

where

P =
1

2
(
∂2L

∂ẋ2
)|γ , Q =

1

2

(
∂2L

∂x2
− d

dt

∂2L

∂x∂ẋ

)
|γ
.

Using the fact that in the integral (3.11) the term Pḣ2 is dominating [12], we get the following proposition.

Proposition 4. If γ(·) is a minimizing curve for the fixed extremities problem then it must satisfy the
Legendre condition:

(
∂2L

∂ẋ2
)|γ ≥ 0. (3.12)

3.1.5 The Accessory Problem and the Jacobi Equation

The intrinsic second-order derivative is given by

δ2C =

∫ t1

t0

(
P (t)ḣ2(t) +Q(t)h2(t)

)
dt, h(t0) = h(t1) = 0,

where P,Q are as above. We write

δ2C =

∫ t1

t0

(
(P (t)ḣ(t))ḣ(t) + (Q(t)h(t))h(t)

)
dt
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and integrating by parts using h(t0) = h(t1) = 0, we obtain

δ2C =

∫ t1

t0

(
Q(t)h(t)− d

dt
(P (t)ḣ(t))

)
h(t)dt

Let us introduce the linear operator D : h 7→ Qh− d
dt (Pḣ). Hence, we can write

δ2C = (Dh, h) (3.13)

where (, ) is the usual scalar product on L2([t0, t1]). The linear operator D is called the Euler-Lagrange
operator.

Definition 3. From (3.13), δ2C is a quadratic operator on the set C0 of C2-curves h : [t0, t1] → R satisfying
h(t0) = h(t1) = 0, h ̸= 0. Rather to study δC > 0 for each h(·) ∈ C0 we can study the so-called accessory
problem: min

h∈C0

δ2C.

Definition 4. The Euler-Lagrange equation corresponding to the accessory problem is called the Jacobi
equation and is given by

Dh = 0 (3.14)

where D is the Euler-Lagrange operator: Dh = Qh − d
dt (Pḣ). It is a second-order linear differential

operator.

Definition 5. The strong Legendre condition is P > 0 where P = 1
2 (

∂2L
∂ẋ2 )|γ . If this condition is satisfied,

the operator D is said to be nonsingular.

3.1.6 Conjugate Point and Local Morse Theory

See also [14], [27].

Definition 6. Let γ(·) be an extremal. A solution J(·) ∈ C0 of DJ = 0 on [t0, t1] is called a Jacobi curve.
If there exists a Jacobi curve along γ(·) on [t0, t1] the point γ(t1) is said to be conjugate to γ(t0).

Theorem 1. (Local Morse theory [27]). Let t0 be fixed and let us consider the Euler-Lagrange operator
(indexed by t > t0) Dt defined on the set Ct

0 of curves on [t0, t] satisfying h(t0) = h(t1) = 0. By definition,
a Jacobi curve on [t0, t] corresponds to an eigenvector J t associated to an eigenvalue λt = 0 of Dt. If the
strong Legendre condition is satisfied along an extremal γ : [t0, t] → Rn, we have a precise description of the
spectrum of Dt as follows. There exists t0 < t1 < · · · < ts < T such that each γ(ti) is conjugate to γ(t0). If
ni corresponds to the dimension of the set of the Jacobi curves J ti associated to the conjugate point γ(ti),
then for any T̃ such that t0 < t1 < · · · < tk < T̃ < tk+1 < · · · < T we have the identity

n−
T̃
=

k∑
i=1

ni (3.15)

where n−
T̃

= dim{linear space of eigenvectors of DT̃ corresponding to strictly negative eigenvalues}. In

particular if T̃ > t1 we have

min
h∈C0

∫ T̃

t0

(Q(t)h2(t) + P (t)ḣ2(t))dt = −∞ (3.16)

3.1.7 Scalar Riccati Equation

Definition 7. The quadratic differential equation

P (t)(Q(t) + ẇ(t)) = w2(t) (3.17)

is called the scalar Riccati equation.
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Its connections with the problem is the following. Assume P > 0 on [t0, t1] and assume that there exists
a solution u(·) of the Jacobi equation such that this solution does not vanish on the interval [t0, t1].

Let h(·) be any C2-function such that h(t0) = h(t1) = 0. Then∫ t1

t0

d(w(t)h2(t))dt = 0

and

δ2C =

∫ t1

t0

(
(Pḣ2 +Qh2) + d(wh2)

)
dt =

∫ t1

t0

(
Pḣ2 + 2whḣ+ (Q+ ẇ)h2

)
dt.

If w(·) is a solution of the Riccati equation, the previous expression can be written as

δ2C =

∫ t1

t0

P (t)

(
ḣ+

w(t)

P (t)
h(t)

)2

dt.

Hence

δ2C =

∫ t1

t0

P (t)φ2(t)dt

where φ(t) = ḣ+ w(t)h(t)
P (t) . Now observe that if we set w(t) = − u̇(t)

u(t)P (t) where u(·) is nonvanishing on [t0, t1],

then we get that u(·) is a solution of the Jacobi equation:

Q(t)u(t)− d

dt
(P (t)u̇(t)) = 0

and

ḣ(t) +
w(t)h(t)

P (t)
=

ḣ(t)u(t)− h(t)u̇(t)

u(t)
.

Hence φ(t) ≡ 0 is equivalent to
ḣ(t)u(t)− h(t)u̇(t) = 0.

This is possible if and only if h(·) = Cu(·) where C is a constant. It contradicts the fact that u(·) does not
vanish on [t0, t1] and that h(t0) = h(t1) = 0 if h ̸= 0. Hence φ ̸= 0 unless h ≡ 0 and

δ2C =

∫ t1

t0

P (t)φ2(t)dt

is nonzero for each h(·) ∈ C0 and δ2C > 0.

3.1.8 Local C0 Minimizer - Extremal Field - Hilbert Invariant Integral

Definition 8. Consider the time-minimal problem with fixed extremities: (t,x0), (t1, x1) ∈ Rn+1. Let γ(·)
be a reference trajectory. It is called a C0-minimizer if it is a local minimum for the C0-topology:

d(x, x∗) = max
t∈[t0,t1]

∥x(t)− x∗(t)∥

To obtain C0-sufficient optimality conditions we use the concept of extremal (or Mayer field).

Definition 9. Let γ : [t0, t1] → Rn be a reference extremal issued from x0 at t = t0 : γ(t0) = x0. An
extremal field is a mapping ϕ : (α, t) → Rn+1, α ∈ D = parameter space ⊂ Rn such that:

1. ϕ(α0, t) = (t, γ(t)) is the reference extremal and {ϕ(α, ·);α ∈ D} is a family F of extremals;

2. the image of ϕ denoted T is a tubular neighborhood of γ(·) and through each point (t, x) there passes a
unique extremal of F whose derivative is denoted by u(t, x).

3. The field is formed by extremals, starting at t0 − ε from a single point γ(t0 − ε) for ε > 0 small enough.
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We assume that t 7→ u(t, x) is C1 and we use the following notations:

p̂ =
∂L

∂ẋ |ẋ=u(t,x)

, L̂ = L|ẋ=u(t,x)
, Ĥ = Hp=p̂ (3.18)

where H = p.ẋ− L is the Hamiltonian.

Lemma 1. The following relations hold:

∂p̂i
∂xk

=
∂p̂k
∂xi

,
∂Ĥ

∂xi
= −∂p̂i

∂t
.

In particular the one form ω̂ = −Ĥdt+ p̂dx, called Hilbert-Cartan form, is closed.

Theorem 2. (Hilbert invariant integral theorem). The integral∫
Γ

−Ĥdt+ p̂dx

is independent of the curve Γ(·) on T . Moreover if Γ(·) is an extremal of F it is given by
∫
Γ
Ldt.

Proof. The first assertion is a consequence of the fact that the form ω̂ is closed. Moreover if Γ(·) is an
extremal we have dx

dt = u(t, x) and −Ĥdt+ p̂dx = (L̂− p̂.u(t, x))dt+ p̂dx.

Remark. The resolution of ω̂ = dS on the domain where S : (t, x) → R is a smooth function, is equivalent
to solve the Hamilton-Jacobi equation.

Corollary 2. Let γ(·) be the reference extremal with extremities (t0, x0), (t1, x1) and let Γ(·) be any curve
of T with the same extremities. We define by E the excess Weierstrass mapping:

E(t, x, z, w) = L(t, x, w)− L(t, x, z)− (w − z)
∂L

∂ẋ
(t, x, z),

z = u(t, x, (t, x) ∈ T ). Then, if E ≥ 0 we have that γ(·) is a C0 minimizer on T .

Proof. We have ∫
γ

L(t, x, ẋ)dt =

∫
Γ

(L̂− p̂.u(t, x))dt+ p̂dx,

hence

∆C =

∫
Γ

L(t, x, ẋ)dt−
∫
γ

L(t, x, ẋ)dt

=

∫
Γ

(
(L− L̂)− (ẋ− u(t, x).p̂)

)
dt

=

∫
Γ

E(t, x, u(t, x), ẋ)dt

This proves the assertion.
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